Range of a Transient 2d-Random Walk

نویسنده

  • Arnaud Le Ny
چکیده

We study the range of a planar random walk on a randomly oriented lattice, already known to be transient. We prove that the expectation of the range grows linearly, in both the quenched (for a.e. orientation) and annealed (”averaged”) cases. We also express the rate of growth in terms of the quenched Green function and eventually prove a weak law of large numbers in the (non-Markovian) annealed case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transience, Recurrence and Critical Behavior for Long-Range Percolation

We study the behavior of the random walk on the infinite cluster of independent long range percolation in dimensions d = 1, 2, where x and y are connected with probability ∼ β/‖x − y‖−s. We show that when d < s < 2d the walk is transient, and when s ≥ 2d, the walk is recurrent. The proof of transience is based on a renormalization argument. As a corollary of this renormalization argument, we ge...

متن کامل

A functional limit theorem for a 2d-random walk with dependent marginals

We prove a non-standard functional limit theorem for a two dimensional simple random walk on some randomly oriented lattices. This random walk, already known to be transient, has different horizontal and vertical fluctuations leading to different normalizations in the functional limit theorem, with a non-Gaussian horizontal behavior. We also prove that the horizontal and vertical components are...

متن کامل

The dimension of the range of a transient random walk∗

We find formulas for the macroscopic Minkowski and Hausdorff dimensions of the range of an arbitrary transient walk in Z. This endeavor solves a problem of Barlow and Taylor (1991).

متن کامل

Transient random walks on 2d-oriented lattices

We study the asymptotic behavior of the simple random walk on oriented versions of Z2. The considered lattices are not directed on the vertical axis but unidirectional on the horizontal one, with random orientations whose distributions are generated by a dynamical system. We find a sufficient condition on the smoothness of the generation for the transience of the simple random walk on almost ev...

متن کامل

Three-dimensional cell migration does not follow a random walk.

Cell migration through 3D extracellular matrices is critical to the normal development of tissues and organs and in disease processes, yet adequate analytical tools to characterize 3D migration are lacking. Here, we quantified the migration patterns of individual fibrosarcoma cells on 2D substrates and in 3D collagen matrices and found that 3D migration does not follow a random walk. Both 2D an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011